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A guasi-two-dimensional model problem is presented, which can be used as a
benchmark problem for verification of numerical methods for the solution of the
low Mach number compressible reactive flow equations. A recently developed high
order splitting method for this type of problem is presented and analyzed, and the
behavior of the numerical errors is assessed and compared to asymptotic estimates.
It is found that the behavior of splitting errors is predicted well by the asymptotic
estimates and that these errors are always smaller than the formal truncation order
of the integrating scheme. © 1998 Academic Press
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1. INTRODUCTION

In the numerical solution of low speed compressible reacting flows involved in com|
tion problems, the existence of high frequency acoustic waves places a severe rest
on time steps. In order to deal with this difficulty, one can decouple acoustic waves f
the equations (when such waves are not of interest) using regular perturbation theor
obtain a set of approximate equations which are free of acoustic wave interactions [1—
this set of equations, the pressure appears at leading order in the energy and state eq
(“thermodynamic pressure”) and at first order in the momentum equation (“hydrodyne
pressure”). Several approaches have been used for the integration of the conservatior
tions of low speed combustion and a fairly comprehensive review of earlier works is give
[4]. Recently, two-dimensional simulations of reactive flows with both simple and deta
chemistry and transport have been reported in [5-9], and in references therein.
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692 TOMBOULIDES AND ORSZAG

Although several numerical approaches have been employed for the simulation of
speed compressible reacting flows, one can find very few cases where the overall
vergence rate, local error behavior, and/or stability properties of these approaches |
been analyzed in detail. Using one-dimensional benchmark problems to verify numer
methods for complex two- and three-dimensional reactive flow problems cannot prov
answers to the questions above. More complex 2D benchmark problems are neede
this purpose, and these are not readily available in the literature. Verifying the order
accuracy and stability properties of fully explicit time integration methods [10, 11] is fairl
straightforward; however, these schemes suffer from severe time-stepping restrictions.
restrictions become even more pronounced when solving the full set of conservation e«
tions at very low Mach numbers. This is why many approaches employed today perfc
some type of time-splitting in the solution procedure [12], where some of the terms
the equations are treated implicitly and others explicitly (most commonly the nonline
convective terms), resulting in less severe time-stepping restrictions. In addition, pres:
correction or projection methods, [7-9], are used to incorporate the effects of the pres
in low speed compressible flows; in many cases this leads to coupled iterative solu
procedures. To analyze the error behavior of these types of methods is not straightforw
For example, second-order finite differences are very commonly used, in space and t
for the simulation of 2- and 3D reactive flow phenomena. Unless fully explicit schem
are used, the use of operator splitting in the solution procedure reduces the overall
of accuracy in time to first, or at best to between first and second order. The overall re
is similar when using other higher order methods in time. It is known [13] that operat
splitting, or fractional stepping, needs to be carefully applied in order to maintain globa
the high-order accuracy of the schemes used. This issue is the main focus of the cu
investigation.

Here we present and analyze a new numerical approach, originally reported in [!
for the integration of the governing equations of low Mach number compressible flow.
analyze this approach, we use an integrated asymptotic and numerical analysis of a q
two-dimensional model problem. Here, quasi-two-dimensional denotes a two-dimensic
problem where one of the dimensions (in this cg¥as of infinite extent. In this way,
periodicity can be assumed in this direction, with specified wavenumber, and a nor
mode analysis using Fourier series can be performed. In order to facilitate the presenta
several assumptions will be made. As a first approximation, detailed transport proce:
are neglected and only one-step overall reaction mechanisms are considered. In fact, fc
model problem the species conservation equations are dropped and only the energy, tog
with the momentum and mass conservation equations, is used. In addition, all dyna
transport coefficients (in particular, the dynamic viscosity and heat transport coeffici
u, A, respectively) and the specific hegtare assumed to be independent of temperature
in this way the kinematic transport coefficients, i.e= 11/ p anda = 1/ pc, (Wherep is the
fluid density) are directly proportional to the temperature. For the model problem, it is al
assumed that the leading order pressure is constant in time as well as in space, cond
corresponding to an open system; even without this assumpijaiges not affect normal
modes other than the zeroth one (which is not considered in the current analysis), sin
is constant in space. These assumptions can be removed and are only made becau
emphasis is in the presentation of the numerical scheme. A more general presentatic
the numerical scheme is given in [14], whereas applications of this method to proble
involving detailed transport and chemistry are given in [15, 16].
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After nondimensionalization with appropriate reference quantities and incorporating
the above assumptions, the governing equations become

oT o 2 .
ov 1 v 1
— 4V-VW=—-V — (VW + ZV(V.v 1c
5t B p1+Re< +3V( )> (1c)
1 w’
= VT 4 —, 1d
V=Repr 't T (1d)

wherevisthe velocity field]T the temperaturg, is the first-order pressure or hydrodynami
pressure, and’ is the reaction term to be specified below. Here Re and Pr are the Reyn
and Prandtl numbers, respectively, and in their nondimensionalized toramd v are
simplyae =v =T, since, as mentioned above, kinematic transport coefficients are dire
proportional to the temperature; in addition, since the leading order pregsisreonstant
in space and time, it is equal to 1 in nondimensional form. Equation (1d) replaces the r
conservation equation and has been obtained by combining the equations of energy,
and continuity. It can be observed from Eq. (1d) that the only sources of nonzero diverg
of the velocity field are the heat released by chemical reactions, and diffusive heat tra
(and for closed systems only, global compression or expansion).

2. LINEARIZED MODEL PROBLEM

The model problem described in this section was constructed in order to be use
the verification of the numerical approach outlined here and described in detail in [
As reported in [14], a purely 1D problem is not sufficient to assess the behavior of
called “splitting errors” which are introduced because of the decoupling of the pressure
velocity calculations. Instead, a quasi 2D fixed boundary problem is developed from &
analytical solution of the conservation equations in a finite domain. The one-dimensi
problem is the solution of the following system in the domaia[—1, 1]:

AT, 92T,
Uoll = 2 20y (2a)

2% Re Prgx2
au 4y 92U 19P
U= 20 =01 (2b)
ax 3Re 9x2  pg 0Xx
900 0Uo
o 2 2c
0 ax Lo Ix (2c)
poTo =1, (2d)

wherev =« =T. The reaction term in the energy equation is specified as

./ 1 X L X X
Wy = o secﬁ<g> + mrtanh(g)secﬁ<g>, ®)

where the parametdrcorresponds to the thickness of the temperature layer, as in Fig
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FIG. 1. Velocity U, and temperatur&, for model problem.

The problem is closed by specifying boundary conditions to be

Up(£1) = To(1) = %(3 + tanh(%))

The solution of system (2a)—(2d) is simply

Uo(X) = To(X) = % (3 + tanh<§>) 4

and the flow resembles a premixed flame locatexi-a0 with reactants approaching the
flame from the sidex=—1, and products exiting the domain at=+1. The reaction
term (3) is chosen artificially to yield the flame front like solution (4). This form of the
reaction term (3) does share some qualitative structure with that expected for premi
flames, but, due to the second term on the right side of (3), it has an artificial energy ¢
for x <0 withx~§ and Re Pk O(1).

The numerical solution of this 1D problem was performed using the numerical appro:
described in [14]. For the spatial discretization four spectral elements were usedxin tf
direction, and the number of collocation points inside each of these elements was va
from 5 to 15. This problem was solved as a time-dependent problem, i.e. with the ti
derivatives ofTg, Ug, and po included in the left-hand sides of equations (2a), (2b), an
(2c¢), respectively; the steady state solution to this problem is given by (4). It can be s
in Fig. 2 that theL, error of both the solutioty and of the divergence of the velocity
field dUp/dx decay exponentially with respect to the number of collocation points. Th
kind of exponential decay of the error is typical of spectral type errors; however, for tt
problem the magnitude of the error is not affected by the time atepbut only by the
spatial discretization error; i.e., the errors in Fig. 2 are almost independent of the valu
At. The reason for this is that splitting errors are identically equal zero in 1D, and, the ol
source of error in the steady solution of system (2a)—(2d), is spatial discretization er
Therefore, in order to test all aspects of the numerical approach, a more complex mc
problem was constructed.

Following the analysis in [13], a linear stability analysis was performed for the or
dimensional problem described by Eq. (4). The objective of this analysis is to obtain
least stable eigenmode with respect to perturbations in the trangweisection, which is
assumed to be infinite in extent. Subsequently this least stable eigenmode is used as an
condition for the time integrating scheme described in Section 3 and errors in the valu
the decay rate (eigenvalue), and splitting errors are monitored during the integration. T
new problem involving the integration of the two-dimensional linearized equations has
the required features to test the numerical scheme. The linearization around the base
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FIG. 2. ErrorUgy — Ugexact@nd divergence erraf = 9Uy/9dX — (0Up/9X)exact @S @ function of number of col-
location points for base flow of model problem.

(To, Up) is performed as

UX,y,t) = U'(X, y,t) + Uo(x)
V(X y,t) =v'(Xy,1)
Pi(X, ¥, ) = py(X, ¥, 1) + Pr(x) (5)
p(X, Y, 1) = p'(X, ¥, 1) + po(X)
T Y1) =Ty, 1)+ To(x),
where the primed quantities on the right side indicate the perturbation field. Substitu

expressions (5) in the equations of motion (1a), (1c), and (1d) and keeping terms of first ¢
in the perturbation quantities, the following linearized system of equations is obtained

u——m =
ot X dx Re

v’ ' To /0% 9% 13Q ap;
CpUoo = (s @) _ To P
ot ox Re\dxZ2 = 9y2 3 9y ay

au’ au’ dU, To /9% 33U 13Q ap; dU
— +Ug— + U ——= 4+ —+= - T T—— (6a
TPt (8x2+8y2+38x> OaxJr dx (6a)

(6b)
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aT’ oT'  dTy  To (02T 02T T d2To
0 - = + (6¢)
ot X dx RePr\ 9x2 ay? Re Prdx2
- 1 /32T 9%T’ T/ 1 d°T
=+ — = el e . (6d
Q ax 39y Re Pr( ax2  9y? ) + To (Re Prdx? QO) (6d)

Inthe derivation of these equations we have used Eq. (4), and the assumptioathat T,
whereas terms involving/p are linearized, to first order, as

/ /
(1— p_) :To(l— p—).
Lo Lo

This equation is the linearized form of the equation of state (1b). On the other hand,
reaction rate (3) is only a function of space, and not of the flow variables. Therefo
the reaction rate term does not contribute to the linearized equations. Equation (6d) a
replaces the mass conservation equation and has been derived by combining the equi
of energy, state, and continuity. The system (6a)—(6d) is a set of linear partial differen
equations with variable coefficients, since the nonlinear terms have been linearized arc
the base solutiody, Tp, and one can find normal mode solutions of this system if periodicit
is assumed in thg direction. The normal mode solutions are of the form

1

I

1
,00

u'(x, y, t) = Ref[l(x) et &XY]

V(X Y, t) = Re[Di(x) et eXY] -
T'(x, Y, t) = R Tk(x) e €]
Pr(X, Y, t) = Re[ Py (x) & €4Y]
Substituting (7) into (6a)—(6d), the following eigenvalue problem is obtained:
N a0y - dUo 340 e 13Qy 9 Py
=—Uyg— — T— + — [ — — S K ) —Tp—=X
7k Yo X @+ k) + Re X2 3 0x X (8a)
. vk To [ 00k ikOQy o
oV = — 087 + — (8)(2 - > IkTOplk (8b)
. afk dTo To [(%Tk o= T d2To
Tk =—-Up— — — kT —_—
7k UO Kax + Re Pr\ 9x2 )+ Re Prdx2 (&)
L 90y 1 (9T ,- T/ 1 d?To
= — +ikd — kT — = - 8d
Q X K= Re Pr< %2 )+ To \ RePrdx? Qo (8d)
with boundary conditiongiy(x =+1) = tx(x =+1) = T(x==+1)=0. In order to calcu-

late the leading eigenvalug (with largest real part), an Arnoldi type method is used [17].
In this method, the largest eigenvalues are computable if we can evaluébe various
z={0y, D, Tk}T; we need not either evaluatteitself of L ~1 or the like.

3. NUMERICAL SOLUTION OF MODEL PROBLEM

The integration of Eqgs. (8a)—(8d) is performed using a mixed explicit-implicit splittin
approach. For the numerical solution of this problem, the left-hand sides of Eqgs. (8a), (
and (8c), are replaced by the time derivative§gfix, andTy, respectively. In this way, the
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numerically calculated decay rate of the least stable eigenmode, used as the initial con
to the mixed initial/boundary value problem, can be compared with its corresponc
eigenvalue (true decay rate). The formal time integration method is based on back
differentiation and is the same scheme used to integrate the energy and species equ
A pressure Poisson equation, similar to that in incompressible flow, is derived for
hydrodynamic pressurp;, accounting for the nonzero thermal divergence of the veloci
field which is seen as a constraint enforced by the hydrodynamic pressure. In addi
although theright- and left-hand sides of (8d) have to be equal in the continuous (nondisc
form of the equations, in the following the divergence of the velocity field will be calle
Oy = 30 /0x +ikdy, whereas the right-hand side which is only a function of the ter
perature will be denoted &3t . The difference betwee®, and Qr  will be used as a
measure of the error caused by the splitting.

The integration of the momentum equation (8a)—(8b) is explicit for the linearized c
vective terms, whereas it is implicit for the viscous and pressure terms, as in

J— An+1 q n—q +1
dUg dUg To 92 Uk ~ 18Q
Z Zﬁq<uo_+ kﬁ) T el e KUt 3 aTk

—— + T dx (9a)
J-1 ~n+1—q J-1 An q ~ n+1
oDy To (0% . | 1KQry
U —ikT — = 9b
o falo ot o (9b)
q=0 q=0
Slaftt S oy
At A\ 0%x T Mdx
q=0 q=0
2T T 2 n+1
To (9T o7, TkdTo (00)
RePr\ 9x2 To dx2
. 1 Bka o\ -|’=n+1 1 d2T
n+1 - _ - _ kZT k 0 _ ) ad
™™ Re Pr< Ix2 k> T (Re Prdx2 QO) (9d)

The pressure Poisson equation is derived by taking the divergence of the linearized
mentum equations (9a)—(9b) as

N J-1 _ An+l-q J-1 ~n—q
9 9 Pk 27 A > q=0 % Qx . a0y

(Tt ) k2T, _£e=079xk kU S

8x< 2 5x > 0Py = At 0 :oﬂq ax

8uk dUo A+1dUO
(ZﬂQ@O 0ae) TG
9 To [40QF nq
+a—xR—e<3 T "‘Zﬂq

T J-1 aAn q
+ikR—e<—|kQ”+l+Zﬁq ) (%)

wherewy is the vorticity which is equal ta'= dvx/dx —ik(k. It has to be noted that
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pressuref,, is not governed by a predictive equation (i.e., no teérfy, /dt appears in
any of the equations above) and is in equilibrium with the velocity field at each time st
Therefore, it does not really require a supersariptl. The right-hand side of the pressure
equation (9e) does not contain the velocity at the new time tév&lIn order to decouple the
pressure and velocity calculation, these terms involyiiRg o} "1 in the pressure equation
have been expressed in terms of known quantities. This was performed using the identi

920 a (a0 . (00 .

— — K = — [ — +ikdyx | —ik{ — —ik0 10
ax2 Hk ax(ax + Uk> ! <8x I uk) (102)
%0 o0 (00K . d (k.

W_k Uk—|k<a—x+|kvk>+a—x(a—x—lkuk> (10b)

and by using the irrotational-solenoidal decomposition of the velocity Viedel vy s+ v |
(wherevy = {0, 0x}) and treating the terms involving, ; implicitly (using the known

“thermal” divergence of the velocity fieI@’}fkl) as

~ 8Gk . n+1 80k . nrl A
n+1 A A n+1
= —4ik = —+4ik ~ QT
K ( dX vk) X vk Tk

The same substitution has been used for the implicit calculation of the viscous terms w
solving for the new velocity componer{t, o« }"**in Egs. (9a)—(9b). Substitutirf@?f’kl for
Qrk‘“ in the equations above is only done to decouple the pressure and velocity calculat
and it does not mean that the difference betwé@f’;1 and QI** will be equal to zero at
the end of each time step. In fact, it is this difference that governs splitting errors, which

analyzed in Section 4. For the solenoidal part, an explicit extrapolation is used, resultin
e . \"t /et L\ S
optt = ( — —ikQ = — —ikQ A ap %
k ax k ax “) ;'B vk

This procedure is similar to methods used in splitting methods for incompressible flo
(see[13, 18]). The boundary conditions used for the pressure equation are derived by ta
the dot product of Egs. (6a)—(6b) in the direction normal to the boundarfesthis case
simply x) and making the substitutions mentioned above. In this way, a Neumann pres:s
boundary condition is obtained for Dirichlet velocity boundaries, namely,

3P 1 (4@ =
p1k=< T ik Y ey 0. (11)
gq=0

X Re\ 3 0dx

In summary, the solution method proceeds as follows: The energy equation is solved i
pendently since the convective terms, which couple the energy and momentum equat
are calculated explicitly. The splitting scheme for the momentum equations involves f
calculating the explicit convective terms and then solving for the pressure from Eqgs. (¢
and (11); subsequently, the incorporation of the pressure correction to the velocity fiel
performed, followed by the integration of the viscous part of the momentum equation wh
is performed implicitly. The boundary conditions for the velocity are incorporated in tt
viscous step as well. The solution procedure is then completed by choosing a methoc
the spatial discretization. The methods used in this work are either global spectral mett
or spectral element methods, which are described extensively in [19-22].
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In the following section, it will be demonstrated that the splitting procedure descrik
in this section gives overall high-order accuracy in time and minimal errors in mass ¢
servation, or so-called splitting errors. The behavior of these errors is obtained usin
approximate asymptotic analysis. It is shown that splitting errors are always smaller
the formal truncation erra®(At?) of the Jth-order integrating scheme.

4. ERROR IN MASS CONSERVATION DUE TO SPLITTING

In order to obtain an estimate for splitting errors, an equation for the difference betw
the divergence of the velocity f|ezlq)r”rl and the “thermal” d|vergenc(=2”+1 has to be
obtained. The “thermal” dlvergencfe'“rl is viewed as a constraint on the velocity field
the same way that condmo@n+l 0 is a constraint for incompressible flow. In order tc
derive an equation for the differenge= Q”Jrl Q?}l, we combine the divergence of
Egs. (9a) and (9b) and Eq. (9e) to obtain

J-1
o K 1 0_0d¢ . BTO Angl n—q
— — ——To— =ik— - . 12
( + )¢ Redx "X Ik X “k qgﬁqwk (12)

This is an elliptic (variable coefficient Helmholtz) equation for the differepee Qi —

”*1 , between the divergence at time st&p* and the value dictated by the energy equatio
from Eq. (9d). Itwas mentioned in the beginning of Section 2 that a purely 1D problemis
sufficient to assess the behavior of splitting errors. Although Eg. (12) is one-dimensic
it is the result of the two-dimensional linear stability analysis, described in 3, and has
required features to test the numerical scheme. For example, the same equation for a |
1D problem is homogeneous, since in that case, the only relevant wavenumber wou
k=0. The right-hand side of this elliptic equation is nonzero only when the viscosity
variable, i.e. wherl is not constant. For a general nonlinear problem, this viscosity is r
only a function of the base temperatufg but of the total temperature and the specie
concentrations as well; its simple form here is only a result of linearization. In additi
the right-hand side of (12) is of ordé?(At”), whereJ is the order of the time stepping
used (typically up toJ = 3), and its maximum i€ (At). To find the boundary condition
for (12), Egs. (11) and (9a) are combined to obtain

43¢ . (. g an
éa—X:—lk<qz=;)ﬂqwk —aptt. (13)

Both Eq. (12) for¢ and its boundary condition (13) have a nhonhomogeneous part wh
scales withO(At?). The nonzero boundary condition (13) is the cause of splitting errc
that also appear in incompressible flows (homogeneous solution), whereas the nol
right-hand side of Eq. (12) is the part of the error which is caused by the compressib
and only when the kinematic viscosity is spatially varying.

In this section, the error in mass conservation due to splitting will be analyzed for
case of small values okt/Re. A one-dimensional problem, which incorporates most
the important features of the problem, is used for the asymptotic study. It is assumed th:
temperaturdl varies in layers of thickness much larger than the length sestigRe)'/2.
This means that if the temperature has a local structure somewhere similar @o/8nh
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typical of flame fronts, then the length scabe> (At/Re)Y/?. The domain of interest extends
from x = —1 tox =41, and the boundary conditions are derived from (12). Equation (1.
becomes

82¢// + Sza(X)(ﬁ/ + b(x) (VO + 52k2>¢ = gza(X)A(I)s, (14)

whereas the boundary conditions are
3
¢'(£1) = _Aws|:t1 (15)

Herep = Qptt — Q1L Aws=ik (@™ — Zq “o Badr 1), ande = (At/Re)V/2. Because
&« has the opposite parity &, the right side of Eq. (14) has the same parity with the lef
side. The functionsa(x) andb(x) are given bya(x) = Tj/ To andb(x) = —1/To. It will be
assumed later thatws is of orderAt” everywhere, fodth-order time stepping, in order to
getglobal estimates fgr. Equation (14) is a nonhomogeneous singularly perturbed ordina
differential equation. The problem is divided into two separate problems, one with nonz
right-hand side and zero boundary conditions (the particular solgtiooorresponding to

0=0.1, £=0.05
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FIG. 3. Distribution of temperature and divergence errordes 0.05, § = 0.1, andAws = &2.
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errors because of compressibility), and one with zero right-hand side and nonzero bour
conditions (the homogeneous solutigpn, corresponding to standard splitting errors). /
particular solution to this equation is found by first constructing the Green’s function
the differential operator of Eq. (14) using the WKB method and then finding the partict
solution of the nonhomogeneous problem. Using WKB, it is found that the general solu
has the form t@(¢)

1 /M dt
_ -1/4 =
d(X) = ALT exp<is/ T1/2(t)>’ (16)

whereA.. are constants determined by the boundary conditions. The solgtioasd¢y
are found, to leading order, to be

Pp(X) = e?AwsT'(X) + O(e*Aws) (17)
PH () = FeDws|aaT 400 F () + O(e?Aws|11). (18)
This means that if the quantityws is globally of orderAt or ?Re (for a first-order overall

scheme), the overall error in the interior of the domain, because of the inhomogenei
(14),isO(At?/Re). Similarly the error in the interior for a time integration scheme of ord

0 T | T T T | T T T I T T T T T T T
e 0 o ....
%... i
2+ |
]
N
4 .
i [ ]
_6 1 I i 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
-1 0 1 2 3

FIG. 4. Distribution of eigenvalues for the linear stability problem with =0.2.
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J would beO(At+1/Re). For simplicity we have assumed thsis(—1) = Aws(+1).
On the other hand, again assuming thais(£1) is O(s? Re), the error close to the do-
main boundaries, which is the effect of nonhomogeneous boundary conditions, beco
O(At¥2/ReY?). This estimate is true in boundary layers®fs) close to the boundaries
X~ £(1—¢), where the functionf (x) gives an overall contribution aP(1). In the rest
of the domain, the functiorf (x) in (18) is exponentially small. Therefore, the error in
mass conservation (At +%2/Re"?) in boundary layers of)(¢) away from the bound-
aries, whereas it i© (At’*1/Re) in the interior of the domain for a genedah-order time
integration scheme.

In Fig. 3, we plot the distribution of the two sources of divergence error, from the nonze
inhomogeneity and the nonzero boundary condition respectively. The case plotted is
£=0.058=0.1, andAws = ¢2, and corresponds to the temperature profiles 0.5(3 +
tanh(x/8)), shown in Fig. 1.

5. NUMERICAL RESULTS

The eigenspectrum of (8a)—(8d) for different values ofythgavenumbek is calculated
using the numerical approach described at the end of Section 2 for thé €a&@ and
Re=Pr=1. The least stable eigenvalugsof this system are plotted in Fig. 4 as a function

:l T 1 1T T L AL T 1 11 T 1 T 1 t 0.015 _—‘ T T T T LI L L —_
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FIG. 5. Least stable eigenvector fer=1, § =0.2, and Re=Pr=1.
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FIG. 6. Errorin decay rate, using different order integrating schemes.

of k. As can be observed from the figure for high values of the wavenukiherspectrum
behaves like-k? as expected, since small scales are viscously damped.

The least stable eigenvector foe=1 corresponding to the leading eigenvaluespt=
—3.37684537615 is plotted in Fig. 5. This eigenvector was subsequently used as an i
condition for the solution of system (9a)—(9e) as an initial-boundary value problem us
the numerical approach described in Section 3.

In Fig. 6, the error in the value of the decay rate, as obtained by a time-dependent s
lation of the linearized two-dimensional problem, using first, second, and third order ti
integrating schemes, is shown. As can be observed from this figure, first, second, and
order accuracy is obtained, respectively, for each of the schemes used, which demons
the fact that splitting errors are of higher order and do not destroy the formal order of a
racy. The spatial resolution used in these simulations was 257 Legendre collocation p
in the x-direction.

In addition, the value of the error in mass conservation is plotted as function of
Figs. 7a and 7b. The divergence errors at the domain boundary (a) and at the midc
the domain (b) are indicated as symbols in these plots for different time stepping or
and values ofAt; also shown as lines in these plots are the asymptotic estimates obta
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FIG. 7. Distribution of mass conservation errors at xax —1 and (b)x =0, respectively, fofirst, second
andthird order, respectively.

in Section 4. As can be observed, when the value-ef(At/Re)'/? is small enough with
respect to the “flame thickness” (hete- 0.2), i.e. whenAt < 0.01 (for Re=Pr=1), the
results of the asymptotic analysis agree well with the smulations. Also, for very low valt
of At the errors for the third-order scheme are very close to the spatial discretization er
(which for 257 Legendre points leads to a spatial erraPaf0-1?)), saturating at roundoff
error. Therefore, the estimates obtained for the behavior of splitting errors and the ove
accuracy of the numerical scheme are fairly reliable.

6. CONCLUSIONS

In this work, we have presented and analyzed a quasi-two-dimensional model probl
which can be used as a benchmark problem for verification of numerical methods for
solution of low speed compressible reactive flow problems with applications in combusti
Since an expansion in terms of normal modes is used in one direg)ich€ computational
cost associated with the solution of this problem is essentially the same as the cost
1D problem. This model problem was constructed because of the need to analyze a
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numerical approach for the low Mach number equations and to quantify its error behavit
a nontrivial case; the sensitivity of the decay rate of the least stable eigenmode of the n
problem to small perturbations provides a challenging test-case for numerical algoritt
Moreover, the solution of this quasi-two-dimensional problem provides information on
spatial distribution of errors and, in particular, of splitting errors and allows for the evaluat
of the overall convergence rate of the methods used.

Numerical experiments based on the model problem were performed and were
for the testing of a recently developed numerical approach for these types of proble
numerical results were compared with asymptotic estimates for the behavior of split
errors and were found to be in agreement. Splitting errors were found to be smaller tha
formal truncation errors of the integrating scheme; moreover, our numerical approach |
to overall high order accuracy in time with minimal errors in mass conservation as wel
to a partially decoupled solution procedure. The benchmark problem presented her
be used by other researchers for detailed analysis of the error behavior of other nume
methods.

This work was supported by ARPA/ONR URI Grant N00014-92-J-1796. Part of t
work was completed while the first author was at the Institute of Energy Technology/L
of the Swiss Federal Institute of Technology, Zurich (ETHZ), Switzerland.
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